Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(7): e1009740, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34270629

RESUMO

Nipah and its close relative Hendra are highly pathogenic zoonotic viruses, storing their ssRNA genome in a helical nucleocapsid assembly formed by the N protein, a major viral immunogen. Here, we report the first cryoEM structure for a Henipavirus RNA-bound nucleocapsid assembly, at 3.5 Å resolution. The helical assembly is stabilised by previously undefined N- and C-terminal segments, contributing to subunit-subunit interactions. RNA is wrapped around the nucleocapsid protein assembly with a periodicity of six nucleotides per protomer, in the "3-bases-in, 3-bases-out" conformation, with protein plasticity enabling non-sequence specific interactions. The structure reveals commonalities in RNA binding pockets and in the conformation of bound RNA, not only with members of the Paramyxoviridae family, but also with the evolutionarily distant Filoviridae Ebola virus. Significant structural differences with other Paramyxoviridae members are also observed, particularly in the position and length of the exposed α-helix, residues 123-139, which may serve as a valuable epitope for surveillance and diagnostics.


Assuntos
Vírus Nipah/ultraestrutura , Proteínas do Nucleocapsídeo/ultraestrutura , Nucleocapsídeo/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular , Vírus Nipah/química , Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/química , RNA Viral/química , RNA Viral/ultraestrutura
2.
Front Immunol ; 11: 842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595632

RESUMO

Licensed vaccines or therapeutics are rarely available for pathogens with epidemic or pandemic potential. Developing interventions for specific pathogens and defining generalizable approaches for related pathogens is a global priority and inherent to the UN Sustainable Development Goals. Nipah virus (NiV) poses a significant epidemic threat, and zoonotic transmission from bats-to-humans with high fatality rates occurs almost annually. Human-to-human transmission of NiV has been documented in recent outbreaks leading public health officials and government agencies to declare an urgent need for effective vaccines and therapeutics. Here, we evaluate NiV vaccine antigen design options including the fusion glycoprotein (F) and the major attachment glycoprotein (G). A stabilized prefusion F (pre-F), multimeric G constructs, and chimeric proteins containing both pre-F and G were developed as protein subunit candidate vaccines. The proteins were evaluated for antigenicity and structural integrity using kinetic binding assays, electron microscopy, and other biophysical properties. Immunogenicity of the vaccine antigens was evaluated in mice. The stabilized pre-F trimer and hexameric G immunogens both induced serum neutralizing activity in mice, while the post-F trimer immunogen did not elicit neutralizing activity. The pre-F trimer covalently linked to three G monomers (pre-F/G) induced potent neutralizing antibody activity, elicited responses to the greatest diversity of antigenic sites, and is the lead candidate for clinical development. The specific stabilizing mutations and immunogen designs utilized for NiV were successfully applied to other henipaviruses, supporting the concept of identifying generalizable solutions for prototype pathogens as an approach to pandemic preparedness.


Assuntos
Antígenos Virais/imunologia , Infecções por Henipavirus/prevenção & controle , Imunogenicidade da Vacina , Vírus Nipah/química , Vírus Nipah/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Células HEK293 , Infecções por Henipavirus/virologia , Humanos , Imunização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Transfecção , Proteínas Virais de Fusão/imunologia , Internalização do Vírus
3.
Viruses ; 12(1)2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878180

RESUMO

Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA-NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR-/-) mice after vaccination with the MVA-NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA-NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Glicoproteínas/imunologia , Vírus Nipah/química , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Técnicas de Inativação de Genes , Glicoproteínas/genética , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Solubilidade , Organismos Livres de Patógenos Específicos , Vacinas de DNA , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem
4.
Structure ; 27(4): 660-668.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30799076

RESUMO

Nipah virus is a highly lethal zoonotic pathogen found in Southeast Asia that has caused human encephalitis outbreaks with 40%-70% mortality. NiV encodes its own RNA-dependent RNA polymerase within the large protein, L. Efficient polymerase activity requires the phosphoprotein, P, which tethers L to its template, the viral nucleocapsid. P is a multifunctional protein with modular domains. The central P multimerization domain is composed of a long, tetrameric coiled coil. We investigated the importance of structural features found in this domain for polymerase function using a newly constructed NiV bicistronic minigenome assay. We identified a conserved basic patch and central kink in the coiled coil that are important for polymerase function, with R555 being absolutely essential. This basic patch and central kink are conserved in the related human pathogens measles and mumps viruses, suggesting that this mechanism may be conserved.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Genoma Viral , Vírus Nipah/química , Fosfoproteínas/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Vírus do Sarampo/química , Vírus do Sarampo/enzimologia , Vírus do Sarampo/genética , Modelos Moleculares , Vírus da Caxumba/química , Vírus da Caxumba/enzimologia , Vírus da Caxumba/genética , Vírus Nipah/enzimologia , Vírus Nipah/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
PLoS Negl Trop Dis ; 12(11): e0006978, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30462637

RESUMO

Nipah virus (NiV) infection can lead to severe respiratory or neurological disease in humans. Transmission of NiV has been shown to occur through contact with virus contaminated fomites or consumption of contaminated food. Previous results using the African green monkey (AGM) model of NiV infection identified aspects of infection that, while similar to humans, don't fully recapitulate disease. Previous studies also demonstrate near uniform lethality that is not consistent with human NiV infection. In these studies, aerosol exposure using an intermediate particle size (7µm) was used to mimic potential human exposure by facilitating virus deposition in the upper respiratory tract. Computed tomography evaluation found some animals developed pulmonary parenchymal disease including consolidations, ground-glass opacities, and reactive adenopathy. Despite the lack of neurological signs, magnetic resonance imaging identified distinct brain lesions in three animals, similar to those previously reported in NiV-infected patients. Immunological characterization of tissues collected at necropsy suggested a local pulmonary inflammatory response with increased levels of macrophages in the lung, but a limited neurologic response. These data provide the first clear evidence of neurological involvement in the AGM that recapitulates human disease. With the development of a disease model that is more representative of human disease, these data suggest that NiV infection in the AGM may be appropriate for evaluating therapeutic countermeasures directed at virus-induced neuropathogenesis.


Assuntos
Aerossóis/efeitos adversos , Infecções por Henipavirus/virologia , Doenças do Sistema Nervoso/virologia , Vírus Nipah/fisiologia , Aerossóis/química , Animais , Chlorocebus aethiops , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Masculino , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/imunologia , Vírus Nipah/química , Tamanho da Partícula , Infecções Respiratórias/etiologia , Infecções Respiratórias/genética , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia
6.
Virol Sin ; 33(5): 385-393, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30311101

RESUMO

Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.


Assuntos
Infecções por Henipavirus/transmissão , Vírus Nipah/química , Proteínas Virais/química , África/epidemiologia , Animais , Ásia/epidemiologia , Quirópteros/virologia , Surtos de Doenças , Genoma Viral , Genômica , Infecções por Henipavirus/epidemiologia , Humanos , Vírus Nipah/isolamento & purificação , Vírus Nipah/patogenicidade , Filogenia , Filogeografia
7.
J Mol Model ; 24(5): 113, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691656

RESUMO

Henipavirus, including Hendra virus (HeV) and Nipah virus (NiV), is a newly discovered human pathogen genus. The nucleoprotein of Henipavirus contains an α-helical molecular recognition element (α-MoRE) that folds upon binding to the X domain (XD) of the phosphoprotein (P). In order to explore the conformational dynamics of free α-MoREs and the underlying binding-folding mechanism with XD, atomic force field-based and hybrid structure-based MD simulations were carried out. In our empirical force field-based simulations, characteristic structures and helicities of α-MoREs reveal the co-existence of partially structured and disordered conformations, as in the case of the well characterized cognate measles virus (MeV) α-MoRE. In spite of their overall similarity, the two α-MoREs display subtle helicity differences in their C-terminal region, but much different from that of MeV. For the α-MoRE/XD complexes, the results of our hybrid structure-based simulations provide the coupled binding-folding landscapes, and unveil a wide conformational selection mechanism at early binding stages, followed by a final induce-fit mechanism selection process. However, the HeV and NiV complexes have a lower binding barrier compared to that of MeV. Moreover, the HeV α-MoRE/XD complex shows much less coupling effects between binding and folding compared to that from both NiV and MeV. Our analysis revealed that contrary to NiV and MeV, the N- and C-terminal regions of the HeV α-MoRE maintains a low helicity also in the bound form.


Assuntos
Vírus Hendra/química , Simulação de Dinâmica Molecular , Vírus Nipah/química , Nucleoproteínas/química , Proteínas Virais/química , Vírus Hendra/metabolismo , Vírus Nipah/metabolismo , Nucleoproteínas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Virais/metabolismo
8.
J Proteomics ; 172: 190-200, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092793

RESUMO

Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including soluble and membrane-bound proteins involved in vesicle sorting and transport. Interestingly, many of them have been reported to interact with other viruses. Finally, thanks to the semi-quantitative nature of our data we were able to estimate the ratio among F, G and M proteins and also the ratio between cellular and viral proteins in the VLPs. We believe our data contribute to the better understanding of NiV life cycle and might facilitate future attempts for developing antiviral agents and the design of further experimental studies for this deadly infection. BIOLOGICAL SIGNIFICANCE: Traditionally viral particles have been described as pure entities carrying only viral-derived proteins. Advances in proteomics are changing this simplified view. Host proteins have been identified in many viruses (especially in enveloped viruses). These cell-derived proteins participate in multiple steps in the viral life cycle and might be as important for the survival of the virus as any other viral-encoded protein. In this work, we analyze utilizing LC-MS/MS the cellular proteins incorporated or bound to the virions of Nipah virus (NiV), an emerging, highly pathogenic, zoonotic virus from the Paramyxoviridiae family. Furthermore, we analyzed the ratio between cellular and viral proteins and among the viral F, G and M proteins in the viral particles. The characterization of the Nipah virus-human interactions occurring in the virion might facilitate the development of new therapeutic and prophylactic therapies for this viral illness.


Assuntos
Vírus Nipah/química , Proteômica/métodos , Proteínas Virais/análise , Vírion/química , Cromatografia Líquida , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Espectrometria de Massas em Tandem
9.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904190

RESUMO

Nipah virus is an emerging, highly pathogenic, zoonotic virus of the Paramyxoviridae family. Human transmission occurs by close contact with infected animals, the consumption of contaminated food, or, occasionally, via other infected individuals. Currently, we lack therapeutic or prophylactic treatments for Nipah virus. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. This aim led us to perform the present work, in which we identified 101 human-Nipah virus protein-protein interactions (PPIs), most of which (88) are novel. This data set provides a comprehensive view of the host complexes that are manipulated by viral proteins. Host targets include the PRP19 complex and the microRNA (miRNA) processing machinery. Furthermore, we explored the biologic consequences of the interaction with the PRP19 complex and found that the Nipah virus W protein is capable of altering p53 control and gene expression. We anticipate that these data will help in guiding the development of novel interventional strategies to counter this emerging viral threat.IMPORTANCE Nipah virus is a recently discovered virus that infects a wide range of mammals, including humans. Since its discovery there have been yearly outbreaks, and in some of them the mortality rate has reached 100% of the confirmed cases. However, the study of Nipah virus has been largely neglected, and currently we lack treatments for this infection. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. In the present work, we identified 101 human-Nipah virus protein-protein interactions using an affinity purification approach coupled with mass spectrometry. Additionally, we explored the cellular consequences of some of these interactions. Globally, this data set offers a comprehensive and detailed view of the host machinery's contribution to the Nipah virus's life cycle. Furthermore, our data present a large number of putative drug targets that could be exploited for the treatment of this infection.


Assuntos
Interações Hospedeiro-Patógeno , Vírus Nipah/metabolismo , Mapas de Interação de Proteínas , Proteínas Virais/metabolismo , Animais , Infecções por Henipavirus/virologia , Humanos , Espectrometria de Massas , Vírus Nipah/química , Vírus Nipah/genética , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Internalização do Vírus
10.
Curr Opin Virol ; 24: 105-114, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28601688

RESUMO

The paramyxovirus family comprises major human and animal pathogens such as measles virus (MeV), mumps virus (MuV), the parainfluenzaviruses, Newcastle disease virus (NDV), and the highly pathogenic zoonotic hendra (HeV) and nipah (NiV) viruses. Paramyxovirus particles are pleomorphic, with a lipid envelope, nonsegmented RNA genomes of negative polarity, and densely packed glycoproteins on the virion surface. A number of crystal structures of different paramyxovirus proteins and protein fragments were solved, but the available information concerning overall virion organization remains limited. However, recent studies have reported cryo-electron tomography-based reconstructions of Sendai virus (SeV), MeV, NDV, and human parainfluenza virus type 3 (HPIV3) particles and a surface assessment of NiV-derived virus-like particles (VLPs), which have yielded innovative hypotheses concerning paramyxovirus particle assembly, budding, and organization. Following a summary of the current insight into paramyxovirus virion morphology, this review will focus on discussing the implications of these particle reconstructions on the present models of paramyxovirus assembly and infection.


Assuntos
Paramyxoviridae/química , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/fisiologia , Vírion/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Genoma Viral , Humanos , Vírus do Sarampo/química , Vírus da Doença de Newcastle/química , Vírus Nipah/química , Paramyxoviridae/fisiologia , Paramyxoviridae/ultraestrutura , Proteínas Virais de Fusão/química , Vírion/metabolismo , Montagem de Vírus , Liberação de Vírus
11.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250132

RESUMO

Nipah virus (NiV), a paramyxovirus in the genus Henipavirus, has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery.IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion glycoprotein, in the incorporation of other viral proteins into viral particles. By identifying several regions in the fusion glycoprotein that drive viral assembly, we further our understanding of how these viruses assemble and egress from infected cells. The results presented will likely be useful toward designing treatments targeting this aspect of the viral life cycle and for the production of new viral particle-based vaccines.


Assuntos
Citoplasma/química , Vírus Nipah/química , Vírus Nipah/fisiologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Montagem de Vírus , Liberação de Vírus , Motivos de Aminoácidos , Animais , Citoplasma/metabolismo , Glicoproteínas/química , Humanos , Vírus Nipah/genética , Domínios Proteicos , Vacinas de Partículas Semelhantes a Vírus , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Internalização do Vírus
12.
Biotechnol Prog ; 32(4): 1038-45, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27088434

RESUMO

The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016.


Assuntos
Vírus Nipah/química , Pichia/metabolismo , Proteínas da Matriz Viral/química , Vírion/metabolismo , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Vírus Nipah/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/metabolismo , Vírion/química , Vírion/isolamento & purificação
13.
Biotechnol Prog ; 32(1): 171-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26519022

RESUMO

Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 µg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig.


Assuntos
Vírus Nipah/química , Proteínas Recombinantes/biossíntese , Proteínas da Matriz Viral/biossíntese , Animais , Baculoviridae/genética , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Humanos , Insetos/citologia , Vírus Nipah/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Suínos/imunologia , Suínos/virologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/isolamento & purificação
14.
PLoS Pathog ; 11(12): e1005322, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646856

RESUMO

Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein.


Assuntos
Infecções por Henipavirus/metabolismo , Vírus Nipah/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Vírus Nipah/metabolismo , Conformação Proteica , Proteínas do Envelope Viral/metabolismo
15.
Chembiochem ; 16(2): 268-76, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25492314

RESUMO

We provide an atomic-resolution description based on NMR spectroscopy, of the intrinsically disordered C-terminal domain of the Nipah virus nucleoprotein (NTAIL ), both in its isolated state and within the nucleocapsid (NC). Within the NC the second half of NTAIL retains conformational behavior similar to that of isolated NTAIL , whereas the first half of NTAIL becomes much more rigid. In spite of the mostly disordered nature of NTAIL , chemical shifts and relaxation measurements show a significant degree of α-helical sampling in the molecular recognition element (MoRE) involved in binding to the X domain (XD) of the phosphoprotein, with this preconfiguration being more pronounced than in the NTAIL domain from the cognate Hendra virus. Outside the MoRE, an additional region exhibiting reduced flexibility was identified within NTAIL and found to be involved in binding to the XD. (1) H- and (13) C-detected titration NMR experiments support a highly dynamic binding of NTAIL at the surface of the XD.


Assuntos
Vírus Nipah/química , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas Virais/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Virais/metabolismo
16.
Nat Struct Mol Biol ; 21(9): 754-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108352

RESUMO

Nipah virus (NiV) is a highly pathogenic emergent paramyxovirus causing deadly encephalitis in humans. Its replication requires a constant supply of unassembled nucleoprotein (N(0)) in complex with its viral chaperone, the phosphoprotein (P). To elucidate the chaperone function of P, we reconstituted NiV the N(0)-P core complex and determined its crystal structure. The binding of the N-terminal region of P blocks the polymerization of N by interfering with subdomain exchange between N protomers and keeps N(0) in an open conformation, ready to grasp an RNA molecule. We found that a peptide derived from the N-binding region of P protects cells against viral infection and demonstrated by structure-based mutagenesis that this peptide acts by inhibiting N(0)-P formation. These results provide new insights about the assembly of N along genomic RNA and validate the N(0)-P complex as a target for drug development.


Assuntos
Infecções por Henipavirus/virologia , Vírus Nipah/fisiologia , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Vírus Nipah/química , Nucleoproteínas/química , Fosfoproteínas/química , Ligação Proteica , Conformação Proteica , Proteínas Virais/química
17.
J Virol ; 88(1): 758-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155387

RESUMO

The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small, α-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P in the virus life cycle.


Assuntos
Biopolímeros/química , Vírus Nipah/química , Fosfoproteínas/química , Cristalografia por Raios X , Conformação Proteica
18.
Virology ; 446(1-2): 162-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24074578

RESUMO

Nipah virus (NiV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The NiV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the polymerase for transcription and replication. The polymerase is recruited onto the nucleocapsid via its cofactor, the phosphoprotein (P). The NiV P protein has a modular organization, with alternating disordered and ordered domains. Among these latter, is the P multimerization domain (PMD) that was predicted to adopt a coiled-coil conformation. Using both biochemical and biophysical approaches, we show that NiV PMD forms a highly stable and elongated coiled-coil trimer, a finding in striking contrast with respect to the PMDs of Paramyxoviridae members investigated so far that were all found to tetramerize. The present results therefore represent the first report of a paramyxoviral P protein forming trimers.


Assuntos
Vírus Nipah/química , Vírus Nipah/fisiologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo , Humanos , Conformação Proteica , Espalhamento a Baixo Ângulo , Ultracentrifugação
19.
J Virol ; 87(6): 3130-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283947

RESUMO

Conformational changes in the glycoproteins of enveloped viruses are critical for membrane fusion, which enables viral entry into cells and the pathological cell-cell fusion (syncytia) associated with some viral infections. However, technological capabilities for identifying viral glycoproteins and their conformational changes on actual enveloped virus surfaces are generally scarce, challenging, and time-consuming. Our model, Nipah virus (NiV), is a syncytium-forming biosafety level 4 pathogen with a high mortality rate (40 to 75%) in humans. Once the NiV attachment glycoprotein (G) (NiV-G) binds the cell receptor ephrinB2 or -B3, G triggers conformational changes in the fusion glycoprotein (F) that result in membrane fusion and viral entry. We demonstrate that confocal micro-Raman spectroscopy can, within minutes, simultaneously identify specific G and F glycoprotein signals and receptor-induced conformational changes in NiV-F on NiV virus-like particles (VLPs). First, we identified reproducible G- and F-specific Raman spectral features on NiV VLPs containing M (assembly matrix protein), G, and/or F or on NiV/vesicular stomatitis virus (VSV) pseudotyped virions via second-derivative transformations and principal component analysis (PCA). Statistical analyses validated our PCA models. Dynamic temperature-induced conformational changes in F and G or receptor-induced target membrane-dependent conformational changes in F were monitored in NiV pseudovirions in situ in real time by confocal micro-Raman spectroscopy. Advantageously, Raman spectroscopy can identify specific protein signals in relatively impure samples. Thus, this proof-of-principle technological development has implications for the rapid identification and biostability characterization of viruses in medical, veterinary, and food samples and for the analysis of virion glycoprotein conformational changes in situ during viral entry.


Assuntos
Vírus Nipah/química , Vírus Nipah/fisiologia , Análise Espectral Raman/métodos , Proteínas do Envelope Viral/química , Virologia/métodos , Ligação Viral , Humanos , Ligação Proteica , Conformação Proteica , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/química , Vírion/fisiologia
20.
J Virol ; 87(6): 3119-29, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283956

RESUMO

The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.


Assuntos
Vírus Nipah/fisiologia , Polissacarídeos/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Ensaio de Desvio de Mobilidade Eletroforética , Vírus Nipah/química , Ligação Proteica , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...